Linear Function: y = x

Domain:

Range: Asymptotes (if any): Symmetry (if any): x-intercepts (Roots): y-intercepts (if any): Continuous (y/n): Periodic (y/n):

Quadratic Function: $y = x^2$

Domain: Range: Asymptotes (if any): Symmetry (if any): x-intercepts (Roots):

x-intercepts (Roots): y-intercepts (if any): Continuous (y/n): Periodic (y/n):

Cubic Function: $y = x^3$

Domain:

Range: Asymptotes (if any): Symmetry (if any): x-intercepts (Roots): y-intercepts (if any): Continuous (y/n): Periodic (y/n):

General Polynomial: $y = ax^n$

Domain: Range: Asymptotes (if any): Symmetry (if any): x-intercepts (Roots): y-intercepts (if any): Continuous (y/n): Periodic (y/n):

What is the impact of the coefficients **a** and **n**?

Square Root Function: $y = \sqrt{x}$

Domain:

Range: Asymptotes (if any): Symmetry (if any): x-intercepts (Roots): y-intercepts (if any): Continuous (y/n): Periodic (y/n):

Reciprocal (Rational): $\mathbf{y} = \frac{1}{x}$

Domain:

Range: Asymptotes (if any): Symmetry (if any): x-intercepts (Roots): y-intercepts (if any): Continuous (y/n): Periodic (y/n):

Absolute Value Function: y = |x|

Domain:

Range: Asymptotes (if any): Symmetry (if any): x-intercepts (Roots): y-intercepts (if any): Continuous (y/n): Periodic (y/n):

Greatest Integer Function: y = **[x]**

Domain: Range: Asymptotes (if any): Symmetry (if any): x-intercepts (Roots): y-intercepts (if any): Continuous (y/n): Periodic (y/n):

Exponential Function: $y = e^x$

Domain:

Range: Asymptotes (if any): Symmetry (if any): x-intercepts (Roots): y-intercepts (if any): Continuous (y/n): Periodic (y/n):

Natural Log Function: y = ln(x)

Domain: Range: Asymptotes (if any): Symmetry (if any): x-intercepts (Roots): y-intercepts (if any): Continuous (y/n): Periodic (y/n):

Domain: Range: Asymptotes (if any): Symmetry (if any): x-intercepts (Roots): y-intercepts (if any): Continuous (y/n): Periodic (y/n): Piecewise Function (Will Vary. This is an example.)

$$y = \begin{cases} x+4, x < -1 \\ x^2, -1 \le x \le 2 \\ 4, x > 2 \end{cases}$$

Sine Function: y = sin(x)

Domain:

Range: Asymptotes (if any): Symmetry (if any): x-intercepts (Roots): y-intercepts (if any): Continuous (y/n): Periodic (y/n):

Domain: Range: Asymptotes (if any): Symmetry (if any): x-intercepts (Roots):

y-intercepts (koots). y-intercepts (if any): Continuous (y/n): Periodic (y/n):

Cosine Function: y = cos(x)

Tangent Function: y = tan(x)

Domain:

Range: Asymptotes (if any): Symmetry (if any): x-intercepts (Roots): y-intercepts (if any): Continuous (y/n): Periodic (y/n):

Cosecant Function: y = csc(x)

Domain: Range: Asymptotes (if any): Symmetry (if any): x-intercepts (Roots): y-intercepts (if any):

Continuous (y/n): Periodic (y/n):

Secant Function: y = **sec**(**x**)

Domain:

Range: Asymptotes (if any): Symmetry (if any): x-intercepts (Roots): y-intercepts (if any): Continuous (y/n): Periodic (y/n):

Cotangent Function: y = **cot**(**x**)

Domain: Range: Asymptotes (if any): Symmetry (if any): x-intercepts (Roots): y-intercepts (if any): Continuous (y/n): Periodic (y/n):